搜索
您的当前位置:首页正文

二次根式难题含答案

2024-01-05 来源:赴品旅游


二次根式作业题

1.1)化简35 解:

3562551102222

2)化简3535 解:

设x3535 则

x2(3535)23523535356410

,x0x10 2.化简

解:

36-22(36-22)(-226)226(226)(-226)-63364-8324-240-143 2220-73 11 

3.化简aa

解:aaaa0

1+1-x1-1+x2x2-14.当0x1时,化简(+)+1.21-x+1-x1+x-1+x21+1-x1+x1x-12解:原式=[-]+11-(x1+1-x)1+(x1+x-1)2112x2-1[]+121-x1x(1x1x)2x2-1+12221-x221x2x2-1+121-x211x211x2

2a+ab-1a3-b3a-b5.已知:a>0,b>0.化简()(-).3aa-aba+b解:原式=2a+a3a22[a-3b3ba(a-b)(a-b)(a+b)]a+b3aaabb(ab)2a+ba3aaabbaab2a+ba3(2abb)2a+b3b(2ab)2a+b3b

1+32最接近的整数求3-2y的值.2-16*.设y是与解:因为33313+232-132-1+32-12212323213232132而132642681.414,因此与32最接近的整数是1,故与132最接近的整数是2,将y2代入,得3-2y21.

3x7*.分解因式(a2)xa1

解:原式x3axxxa1x[x2(a1)](xa1)(xa1)(x2xa11)(xa1)[x2x(xa1)[(x2a1a1a11]22222a12a5)]242a12a5(xa1)[(x)]22a1a5a1a5(xa1)(x)(x)2222a1a5a1a5(xa1)(x)(x)22

3898*.2,3,8,9中最大的数是 ,次大的数是 .

3解:3696828168824512242243243335991x24xx29.已知:xa.求:的值.2ax24xx

解:将xa111两边平方得x=a+-2,即x2a+,aaa12122所以4xx2(x+2)-4(a+)-4(a-)aa11由条件知x0,a0,则xa0,所以a,aa11aa11aaa2.于是a,则4xx2a,所以原式11aaaaaa

10*.解方程:

1212122xx2.22xx

解:原方程可化为12121222x-xx2x21212124222两边平方得122x-2xx2x2xxx于是xx122x42212x2x212122由已知得x0,所以x122x2xx2x2121222x10,22xx2212xx210,x221210,2x12x21x122x21xx412x20(x24)(x23)0因为x2+30,所以x2-40所以x2经检验x2是原方程的解.

11*.已知:A35,B3-5.求证:11A3B312A3B313.

解:因为A35,B35,得到A2B26,AB2,又因为AB0,所以A-B(A-B)2A22ABB26-222,AB(AB)2A22ABB262210,所以A3B3(AB)(A2ABB2)2(62)8212812111,又12814412,所以11A3B312.又A3B3(AB)(A2ABB2)10(62)41016016913,又16014412,所以11A3B312A3B313.

12.已知:36a26a10.求(6a)161的值.(6a)16

解:若a=0,则由已知得1=0,出现矛盾,所以a0.3等式36a2+6a+1=0两边乘以(6a-1)得到(6a)-1=0,3所以(6a)=1,于是116(6a)+16(16a)3=(6a)(6a)513(6a)(6a)516a36a216a6a6a16a

13.已知:a0,b0,c0,abc.求证:abc.

解:a0,b0,c0,abc.ab2abc.(ab)2(c)2abc

因篇幅问题不能全部显示,请点此查看更多更全内容

Top