搜索
您的当前位置:首页正文

纸箱抗压计算

2021-10-16 来源:赴品旅游
依据纸箱配比参数:边压强度≥3600N/m

3.6KN/m = 3600/9.8 Kg/m = 367.35 Kg/m

经计算得出在最底层单个箱所承受的压力可维持在 184.175 Kg/m 十层码放方式:

抗压力值(KG)=1.65*(码放层数—1)*单箱毛重=1.65*9*13.2=196.02Kg (超标) 抗压力值(N)=1.65*(码放层数—1)*单箱毛重*9.8=1.65*9*13.2*9.8=1920.996N 八层码放方式:

抗压力值(KG)=1.65*(码放层数—1)*单箱毛重=1.65*7*13.2=152.46Kg(满足要求) 抗压力试验

纸箱抗压能力是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最高压力值。

抗压能力的N。

取箱体和箱面不得破损和有明显碰、戳伤痕的样箱三个。 抗压力试验的设备是包装容器整体抗压试验机

包装容器整体抗压试验机的主要技术参数是: 测量范围:0-50kN 负荷准确度:±2%

压板面积:1200mm×1200mm 上、下板平行度:2/1000

上压板有效行程:标准速度 10mm/mm 无极调速 1-100/min

抗压力试验的检测方法是将三个样箱立体合好,用封箱胶带上、下封牢,放入抗压试验机下压板的中间位置,开机使上压板接近空箱箱体。然后启动加压标准速度,直至箱体屈服。读取实测值。

对测试的结果,求出算术平均值。 被测瓦楞纸箱的抗压力值按下列公式计算: P=K×G(H/h-1)×9.8 式中:P:-抗压力值,N

K:-劣变系数(强度系数); G:-单件包装毛重;kg H:-堆积高度;m h:-箱高;m H/h:-取整位数。

根据SN/T0262-93《出口商品运输包装瓦楞纸箱检验规程》中的计数规定,H/h取速位数。小数点后面无论大、小都入上,就高不就低。

SN/T0262-93检验规程关于劣变系数的规定(表二十五):

表二十五

贮存期 劣变系数K 小于30天 1.6 30天-100天 1.65 100天以上 2 注:劣变系数(强度系数)K根据纸箱所装货物的贮存条件决定。

抗压力试验合格准则的判定为:当所测三个样箱的抗压力值均大于标准抗压力值时,该项试验为合格。若其中有一个样箱不合格,则该项试验为不合格。

纸板边压强度的推算方法

瓦楞纸板的边压强度等于组成纸板各层原纸的横向环压强度之和,对于坑纸,其环压值为原纸环压强度乘以对应的瓦楞伸长系数。

单瓦楞纸板Es= (L1+L2+r×F)

双瓦楞纸板Ed= (L1+L2+L3+r×F+r1×F1)

三瓦楞纸板Et= (L1+L2+L3+L4+r×F+r1×F1+r2×F2) 式中

L1、L2、L3、L4分别为瓦楞纸板面纸、里纸及中隔纸的环压强度(N/m); r、r1、r2表示瓦楞伸长系数(见表二); F、F1、F2表示芯纸的环压强度(N/m); 表二 不同楞型的伸长系数及纸板厚度 楞型 A C B E

伸长系数(r) 1.53 1.42 1.40 1.32 纸板厚度 5 4 3 1.5

注:1. 不同瓦线设备,即使是同一种楞型,由于其瓦楞辊的尺寸不同,瓦楞伸长系数也存在偏差,所以纸箱企业在使用表二进行推算时需根据工厂的设备情况对伸长系数进行调整。

2. 双坑、三坑纸板的厚度就是由各单坑厚度简单相加。 举例:

有一款K纸板,用纸配置为230K//已知230K的横向环压强度为2208N/m,的环压为516 N/m ,的环压为1328 N/m求其边压强度。

题解:

查表得C瓦楞伸长系数为r=1.42 根据公式ES= (L1+L2+r×F) = (2208+1328+1.42 ×516) = 4269 N/m

表三 纸箱抗压强度值修正表 印刷工艺修正(瓦楞板为印刷底材)

印刷工艺 单色印刷 双色及三色印刷 四色套印,满版面实地

抗压强度调整 减6~8%,文字内容越多,印刷面积越大,减幅越大 减10-15%,文字内容越多,印刷面积越大,减幅越大 四色套印减20%,满版面实地减20%,满版实地加多色减30%

长宽高尺寸及比例

高度及长宽比 长宽比大于2 箱高超过 抗压强度调整 减20% 减8% 开孔方式

开孔方式及位置 纸箱侧唛各加一通气孔 两侧唛各一个手挽 两侧唛各一个手挽,正唛一个手挽

抗压强度调整 减10% 减20% 减30% 模切工艺

模工工艺 平压平啤切 圆压平啤切 圆压圆啤切

抗压强度调整 减5% 减20% 减25% 综合举例

有一款彩盒,其坑型为BE坑;尺寸为510×420×;五层纸的用纸配置为350华丰白板/112VISY坑纸/125理文B纸/112VISY F纸/175理文A纸;平压平啤切时两侧唛各打一个手挽,已知350华丰W环压为2900N/m、112VISY F纸环压为740N/m、125理文B纸环压为1100N/m、175理文A环压为1420N/m; 试推测其抗压值。 题解:

根据彩盒尺寸可知周长为,根据坑型可知纸板厚度为,根据坑型和原纸环压可知边压为7425N/m

带入公式 p=5.879*ECT*square roof of (D*Z) P=5.874×7425N/m×square roof of (1.86×0.0045) =5.874×7425N/m× square roof of 0.091m =3969N

由于纸箱两侧唛各一个手挽,则实际抗压应减去20%,平压平啤切,抗压减5%,所以纸箱的实际抗压值应为:

3969×(1-25%)=2977N

纸箱抗压的用纸配置方法

若客户对纸箱抗压值及纸箱印刷加工工艺有明确要求,则可以通过抗压强度推算公式推算出纸箱的边压强度,再根据边压强度推算公式反推出满足客户抗压要求的原纸配置。如果客户仅提供纸箱重量、运输、堆码及印刷加工工艺等方面的信息,那么我们也可以推算

出纸箱的抗压要求,再根据抗压强度推算公式和边压强度推算公式反推出纸箱的边压强度值,并进而确定其用纸配置。详见抗压强度用纸配置流程图。

(一级标题)纸箱抗压强度设计公式

纸箱的抗压强度由纸箱装箱后的总重量、堆码层数和安全系数决定。纸箱抗压强度设计公式如下:

P=G×(n-1) ×K P表示纸箱空箱抗压 G表示单个装箱后的总重量 n表求纸箱装机后的堆码层数 K表示安全系数 举例:

一款纸箱装箱后总重量为、其堆码层数规定为9层,其安全系数设定为5.5,则其抗压值应为多少?

题解 代入公式P=G×(n-1) ×K =15×8×5.5 =

安全系数设计方法

纸箱在流通过程中所受的影响,除了堆码的重量外,还受堆放时间?p温湿环境?p内装物水分?p振动冲击等因素的影响,考虑到这些因素都会造成纸箱抗压强度下降,因此必须设定一个安全系数,确保纸箱在各种因素的作用下,抗压强度下降后仍有足够的能力承

受堆码在其上面纸箱的重量。

一般来说,内装物可以承受一定的抗压,且内装物为运输流通过程较简短的内销品时,安全系数设为3~5左右。内装物本身排放出水分,或者内装物为易损的物品,堆码时间较长、流通环节较多,或者保管条件?p流通条件恶劣时,安全系数设为5~8。

安全系数可以在各种各样的导致抗压强度降低的主要因素确定的前提下,根据一定的方法计算出。

1

K=----------------------------- (1-a)(1-b)(1-c)(1-d)(1-e)… a:温湿度变化导致的降低率 b:堆放时间导致的降低率 c:堆放方法导致的降低率 d:装卸过程导致的降低率 e:其它 举例:

a:温湿度变化导致纸箱压降低率为40% b:堆放时间导致的降低率为30% c:堆码方法导致的降低率为20% d:装卸过程导致的降低率为10% e:其它因素导致的降低率为10%

则安全系数

1

K=---------------------------------------=3.67 (1-0.4)(1-0.3)(1-0.2)(1-0.1) (1-0.1) 表四 安全系数设计参数表 装箱后温湿度环境变化

温湿环境 装箱后从出厂到销售过程中,存储于干燥阴凉环境 装箱后通过陆路流通,但纸箱所处的温湿环境变化较大 装箱后入货柜,走海运出口

抗压强度减损率 10% 30% 60% 装箱后堆码时间长短

堆码时间 堆码时间不超过1个月 堆码1~2个月左右堆码时间3个月以上 抗压强度减损率 15% 30% 40% 装箱后堆放方法

堆放方法 纸箱采用角对角平行式堆码 纸箱堆放时不能箱角完全对齐,但堆放整齐 纸箱杂乱堆放

抗压强度减损率 5% 20% 30% 装卸流通过程

装卸流通情况 流通过程中仅装卸一次,且装卸时很少受到撞击 虽经多次装卸,但装卸时对纸箱撞击较少 从工厂到超市需经过多次装卸,且运输装卸过程中常受撞击

抗压强度减损率 10% 20% 50%

瓦楞纸箱抗压强度的计算——谈凯里卡特公式的应用 瓦楞纸箱抗压强度的计算公式很多,常用的有凯里卡特(K.Q.Kellicutt)公式、马丁荷尔特(Maltenfort)公式、沃福(Wolf)公式、马基(Makee)公式、澳大利亚APM公司计算公式,等等。其中,凯里卡特公式常被应用于0201型瓦楞纸箱抗压强度的计算。凯里卡特公式表达式美国的凯里卡特根据瓦楞纸箱的边压强度和周长提出了计算纸箱抗压强度的公式BCT=ECT×(4aXz/Z)2/3×Z×J式中 BCT——瓦楞纸箱的抗压强度(lb)ECT——瓦楞纸板的边压强度(lb/in)Z ——瓦楞纸箱的周长(in) Xz——瓦楞常数J ——纸箱常数相应的瓦楞纸箱常数见表1。倘若知道瓦楞纸箱的外尺寸和楞型,可根据瓦楞纸板的边压强度ECT推测瓦楞纸箱的抗压强度BCT,或者根据瓦楞纸箱的抗压强度BCT推测瓦楞纸板的边压强度ECT。例如,29英寸彩电包装纸箱采用AB型瓦楞纸板 纸箱外尺寸为904×644×743mm; 毛重G=48Kg; 经多次使用修正确定安全系数为K=6.5; 堆码层数为N=300/74.3=4(堆码限高为3米, 堆码层数 取整数);因为1磅(lb)=0.454千克(Kg)=4.453牛顿(N),1英寸(in)=2.54厘米(cm),所以空箱抗压强度为BCT=KG(N 1)=6.5×48×9.81×(4-1)=9182.16(N)=2061.67(lb)因为瓦楞纸箱的周长Z=(90.4+64.4)×2=309.6(cm)=121.89(in),瓦楞常数aXz=13.36,纸箱常数J=0.54,故瓦楞纸板的边压强度ECT=BCT/【(4aXz/Z)2/3×Z×J】 =2061.67/【(4×13.36 /121. 89)2/3×121.89×0.54】=54.27(lb/in)=95.2(N/cm)=9520 (N/m)表1 瓦楞纸箱常数单 位 英 制 公 制 楞 型 aXz J aXz J A 8.36 0.59 8.36 1.10 B 5.00 0.68 5.00 1.27 C 6.10 0.68 6.10 1.27 AA 16.72 0.50 16.72 0.94 BB 10.00 0.58 10.00 1.08 CC 12.20 0.59 12.20 1.09 AB 13.36 0.54 13.36 1.01 AC 14.46 0.55 14.46 1.02 BC 11.10 0.58 11.10 1.08 AAA 25.08 0.48 25.08 0.89 BBB 15.00 0.55 15.00 1.02 CCC 18.30 0.55 18.30 1.03 AAB 21.72 0.50 21.72 0.93 AAC 22.82 0.50 22.82 0.94 ABB 18.36 0.53 18.36 0.98 BBC 16.10 0.55 16.10 1.02 ACC 20.56 0.53 20.56 0.98 BCC 17.20 0.55 17.20 1.02 ABC 19.46 0.53 19.46 0.98 应用上述公式时,须将公制单位转化为英制单位,比较麻烦。实际上,将公式两边单位转化为公制,只需将瓦楞常数aXz扩大2.54倍,或将纸箱常数J扩大1.86161189倍(2.542/3)即可。若瓦楞常数aXz不变,将纸箱常数J扩大,可得到如表1所示的公制下的瓦楞常数aXz和纸箱常数J。此时,瓦楞纸箱抗压强度单位为牛顿(N),瓦楞纸板的边压强度单位为牛顿/厘米(N/cm),瓦楞纸箱的周长单位为厘米(cm)。凯里卡特公式简化式上述凯里卡特公式显得比较繁琐,事实上纸箱一旦成型,其外尺寸、瓦楞常数和纸箱常数都已确定,所以F=(4aXz/Z)2/3×Z×J可看作一个常数,此时凯里卡特公式可简化为 BCT=ECT×F不同楞型、不同外尺寸的瓦楞纸箱,其简易常数F均可从相关技术参数表中获取。不过,一旦身边没有相关技术参数表,将无从下手,非常不便。如果分析凯里卡特公式,我们会发现尽管不同楞型纸箱其瓦楞常数aXz和纸箱常数J不同,但是每种楞型纸箱其瓦楞常数aXz和纸箱常数J是相同的,将其合并为常数f,则凯里卡特公式可表示为BCT= f×ECT×Z1/3通过一系列的计算,可得到不同楞型纸箱相关常数f,如表2所示。表2 瓦楞纸箱常数f楞 型 英 制f 公 制f 楞 型 英 制f 公 制f A 6.13 11.42 BBB 8.40 15.63 B 5.03 9.36 CCC 9.68 18.02 C 5.74 10.68 AAB 9.80 18.24 AA 8.32 15.49 AAC 10.24 19.06 BB 6.79 12.63 ABB 9.23 17.19 CC 7.82 14.56 BBC 8.80 16.39 AB 7.70 14.33 ACC 9.96 18.53 AC 8.19 15.26 BCC

9.20 17.13 BC 7.27 13.54 ABC 9.60 17.87 AAA 10.32 19.22 — — — 例如,AB型瓦楞纸箱凯里卡特公式可表示为BCT= 7.70×ECT× Z1/3(英制)BCT=14.33×ECT×Z1/3 (公制)上例彩电包装纸箱ECT=BCT/(14.33×Z1/3)=9182.16/(14.33×309.61/3)=94.7(N/cm)=9470(N/m),或ECT=BCT/(7.70×Z1/3)=2061.67/(7.70×121.891/3)=54.0 (lb/in)=94.7(N/cm)=9470(N/m)

纸箱耐压强度是许多商品包装要求的最重要的质量指标,测试时将瓦楞纸箱放在两压板之间,加压至纸箱压溃时的压力,即为纸箱耐压强度,用KN表示。 1、预定纸箱耐压强度

纸箱要求有一定的耐压强度,是因为包装商品后在贮运过程中堆码在最低层的纸箱受到上部纸箱的压力,为了不至于压塌,必须具有合适的抗压强度,纸箱的耐压强度用下列公式计算:

P=KW(n-1)

式中P----纸箱耐压强度,N W----纸箱装货后重量,N n----堆码层数

K----堆码安全系数

堆码层数n根据堆码高度H与单个纸箱高度h求出,n=H/h 堆码安全系数根据货物堆码的层数来确定,国标规定: 贮存期小于30d取K=1.6 贮存期30d-100d取K=1.65 贮存期大于100d取K=2.0

2、据原料计算出纸箱抗压强度 预定了纸箱抗压强度以后,应选择合适的纸箱板、瓦楞原纸来生产瓦楞纸箱,避免盲目生产造成的浪费;

根据原纸的环压强度计算出纸箱的抗压强度有许多公式,但较为简练实用的是kellicutt公式,它适合于用来估算0201型纸箱抗压强度。 3、确定纸箱抗压强度的方法 由于受生产过程中各种因素的影响,最后用原料生产的纸箱抗压强度不一定与估算结果完全一致,因此最终精确确定瓦楞纸箱抗压强度的方法是将纸箱恒温湿处理后用纸箱抗压试验机测试;对于无测试设备的中小型厂,可以在纸箱上面盖一木板,然后在木板上堆放等量的重物,来大致确定纸箱抗压强度是否满足要求; 4、影响纸箱抗压强度的因素 1)原材料质量

原纸是决定纸箱压缩强度的决定性因素,由kellicutt公式即可看出。然而瓦楞纸板生产过程中其他条件的影响也不允许忽视,如粘合剂用量、楞高变化浸渍、涂布、复合加工处理等。 2)水分

纸箱用含水量过高的瓦楞纸板制造,或者长时间贮顾在潮湿的环境中,都会降低其耐压强度。纤维是一种吸水性很强的,在梅雨季节及空气中湿度较大时,纸板中水分与大气环境的湿平衡关系很重要。 3)箱型

箱型是指箱的类型和同种类型箱的尺寸比例,它们对抗压强度有明显的影响。有的纸箱箱体为双层瓦楞纸板构成,耐压强度较同种规格的单层箱明显提高;在相同条件下,箱体越高,稳定性就越差,耐压强度越低。 4)印刷与开孔

印刷会降低纸箱抗压强度。包装有透气要求的商品在箱面开孔,或在箱侧冲切提手孔,都会降低纸箱强度,尤其开孔面积大,偏向某一侧等,影响更为明显。 5)加工工艺偏差 在制箱过程中压线不当,开槽过深,结合不牢等,也会降低成箱耐压强度。三、纸箱动态性能试验

文章链接:工控网(百站) http://www.gkzhan.com/tech_news/Detail/30821.html

纸箱最重要的功能在于它对商品具有良好的保护性,而纸箱的整体抗压强度则是纸箱保护性能的综合体现,抗压强度对纸箱的重要性是不言而喻的。近几年来,随着我国包装业的迅猛发展,许多工厂对纸箱的认识逐渐从凭手感判定纸箱的优劣发展到运用各种仪器对纸箱的物理性能进行测试分析的阶段,很多厂家还配备了抗压仪对纸箱抗压强度进行测试。不仅如此,许多客户特别是国外一些大型跨国公司对纸箱的认识也发生了深刻变化,即从关注纸板耐破强度逐渐转向纸箱的抗压强度,并将抗压强度作为质量验收的最重要指标。

如此一来,如何为客户提供满足抗压强度要求的纸箱便成为众多纸箱厂关注的焦点。特别是近二年原纸价格居高不下,纸箱利润空间一缩再缩的情况下,制造出用纸成本最省而又能满足客户抗压要求的纸箱已成为众多纸箱厂共同的目标。

在此着重就影响纸箱抗压强度的因素、纸箱抗压强度的推算方法、抗压强度的用纸配置方法及抗压强度的测试方法等几个方面对纸箱的抗压强度进行综合论述与分析。有些地方难免会有孔见之嫌,但希望能为广大同行提供有益的参考。 影响纸箱抗压强度的因素

影响纸箱抗压强度的因素有很多,大致可归纳为边压强度、结构尺寸、加工工艺、水分及装箱后的堆码运输方式等。由于各因素的交互影响,常常导致我们对抗压强度的预测产生一定偏差。纸箱厂也往往因为对这些因素认识不足,在设计、印刷及后加工过程中处理不当,造成巨大的成本浪费及客户投诉。因此,弄清这些因素的影响规律是十分必要的。 瓦楞纸板的边压强度

边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。纸箱抗压强度的高低主要取决于纸板边压强度,而边压强度则与组成瓦楞纸板的各层原纸的横向环压强度、纸板的坑型组合及纸板的粘合强度有关。

瓦楞纸板的边压强度主要与各层原纸的横向环压强度有关。一般来讲,克重较高、造纸材料质量较好及紧度较高的原纸,其横向环压强度也相应越高。但并非克重高的原纸环压就一定比克重低的原纸高。以箱板纸为例,进口牛皮横向环压指数可达到12N·m/g以上,而内地一些小型造纸厂生产的箱板纸仅为8 N·m/ g,相差了30个百分点。也就是说克重为175 g / m2的进口牛卡,其环压强度相当于260 g / m2。因此,鉴定纸箱保护性能的好坏,不能以纸箱用纸克重而论。

瓦楞纸板的结构设计是很科学的,其瓦楞的楞形就如一个个连接的小小拱形门,排成一排,相互支撑,形成三角结构体,强而有力,而且平面上也能承受一定压力,富有弹性,缓冲力强,能起到防震和保护商品的作用。瓦楞形状依圆弧半径不同一般分为U形、V形和UV形三种。U型的顶峰圆弧半径较大,呈圆弧形,如B楞、C楞;V型的波峰半径较小,且尖,如A楞;UV型介于两者之间,如AB楞。据试验表明,V形楞在受压初期歪斜度较小,但超过最高点,便迅速地破坏,而U形楞吸收的能量较高,当压力消除后,仍能恢复原状,富有弹性,但耐压强度不高。另外V形楞节省瓦楞纸,粘合剂耗量较少,但加工时

易出现高低楞,瓦楞辊磨损较快。UV形楞是结合U形和V形的特点,目前得到广泛的采用。

瓦楞纸板的各种坑型及其组合,就单坑纸板来说,一般A坑纸箱抗压强度最高,但易受到损坏; B坑强度较差,但稳定性好;C坑抗压力及稳定性居中。A型瓦楞具有较好的防震缓冲性,另外垂直耐压强度也较高;B型瓦楞的峰端较尖,粘合面较窄,其瓦楞高度较小,可以节省瓦楞原纸,其平面抗压能力超过A型瓦楞,B型瓦楞单位长度内瓦楞数较多,与面纸有较多的支承点,因而不易变形,且表面较平。在印刷时有较强抗压能力,可得到良好印刷效果。C型瓦楞兼有A型和B型瓦楞的特点,它的防震性能与A型相近,平面抗压能力接近B型瓦楞。E型瓦楞是最细的一种瓦楞,单位长度内的瓦楞数目最多,能承受较大的平面压力,可适应胶版印刷需要,能在包装面上印出质量较高的图文,这种瓦楞纸板和硬纸板强度差不多。 表一 三种楞型比较表

瓦楞种类 平面压力 垂直压力 平行压力 A 3 1 3 B 1 3 1 C 2 2 2

注:1. 平面压力是指垂直于瓦楞纸板平面的压力。

2. 垂直压力是指与瓦楞方向一致的压力,平行压力是指垂直于瓦楞方向的压力。 3. “1”代表最强。

根据上述不同类型瓦楞的不同特点,单瓦楞纸箱用A型和C型为宜;双瓦楞纸箱用A、B型,B、C型相结合最为理想;接近表面的用B型,能起到抗冲击力较强的作用;接近内层的用A型或C型弹性足、缓冲力强;采有用AB型或BC型结合,使纸箱的物理性能发挥两个优越性。中包装宜选用C型楞,E型瓦楞代替厚纸板,用于小包装。最近几年,国外又发展有F楞、G楞等比E楞更小的瓦楞,同时也开发出了K楞等特大瓦楞。

除此之外,纸板粘合强度及坑形挺度也对纸板边压强度造成一定影响。坑形越挺,粘合越好,边压强度越高。存在塌坑、倒楞、脱胶等缺陷的纸板强度,其边压强度会得到不同程度的削弱。

纸箱长、宽、高尺寸及比例

大量的数据分析表明,纸箱的抗压强度与纸箱周长、纸箱高度及纸箱长宽比存在一定关系。纸箱周长越长,抗压强度越高,纸箱周长与抗压强度存在一定的换算关系。

n 箱高在10厘米~35厘米时,抗压强度随高度增加而稍有下降; n 箱高在35厘米~65厘米区间时,其抗压强度几乎不变; n 箱高大于65厘米之间时,抗压随高度增加而降低。 主要原因是高度增加,其不稳定性也会相应增加。

一般来讲,纸箱长宽比在1~1.8的范围内,长宽比对抗压强度的影响仅为±5%。其中长宽比RL=1.2~1.5时,纸箱的抗压值最高。纸箱长宽比为2:1时,抗压强度下降约20%,因此设计纸箱时长宽比不宜超过2,否则会造成成本浪费。

堆码时间及堆码方式

纸箱的抗压强度随堆码时间的延长而降低,这种现象称为疲劳现象。试验表明,在长期载荷的作用下,只要经历一个月的时间,纸箱的抗压强度就会下降30%,在经历一年后,其抗压强度就只有初始值的50%。在设计纸箱材质时,对流通时间较长的纸箱应提高其安全系数。

纸箱堆码方式也对纸箱的抗压强度产生一定影响。纸箱竖坑方向承受的压力大大超过横坑方向,纸箱堆码时应保持竖坑方向受压。从试验结果来看,纸箱的箱角部位承受的压力最高,离箱角越远,承压力越低。因此纸箱在堆码时应尽量保持箱角与箱角对齐叠放(见图2)。

常见的纸箱堆码方式有三种:砖砌式、上下平行式及风车式(见图3)。此三种方式中,上下平行式堆码有利于保持箱角充分受压,因而最为合理。而砖砌式及风车式则应尽量避免。 纸箱开孔方式

部分纸箱上有通气孔、手挽孔等,这些开孔也会对纸箱的抗压造成重大影响。试验表明,开孔越大,抗压强度减损越大;开孔离顶、底部越近,离中心往左右越远,抗压强度越低;开对称孔比开不对称孔的抗压强度减损要小。

一般来说,侧面各1个手挽使纸箱的抗压强度降低20%,两侧面及正面各1个手挽使纸箱的抗压强度降低30%。有些工厂在纸箱内壁开孔部位贴一层加强卡,这样不仅可以降低开孔给抗压强度造成的影响,同时还可以防止手挽部位受力时发生破损,可谓一举两得。 纸箱印刷工艺

纸箱的印刷工艺对抗压强度的影响也不容忽视。印刷面积、印刷形状及印刷位置对纸箱抗压强度的影响程度各不相同。总的来说,印刷面积愈大,纸箱抗压强度的降低比率也愈大。满版实地,块状及长条状印刷对抗压强度的影响比较大,设计时应尽量避免。就纸箱印刷位置而言,印刷在正侧唛中间部位较边缘部位的抗压高

大量试验数据显示,单色印刷使纸箱的抗压强度降低6%~8%,双色及三色印刷使纸箱的抗压强度降低10%~15%,四色套印及整版面实地印刷使纸箱抗压强度下降约2%。对于多色印刷,采取先印刷,再覆面模切的预印加工工艺可以有效降低纸箱因印刷而造成抗压强度减损的幅度。 模切工艺

纸箱在进行模切加工过程中,由于受到外部重压,纸箱的坑形会受到不同程度的损害,因而抗压强度也会下降。比较而言,平压平模切对抗压强度影响较小,圆压圆及圆压平模切对抗压影响则大一些。譬如与印刷机连动的弧形啤切,可导致纸箱抗压强度减少25%以上。 纸箱内衬件设计

许多纸箱的内部还包括EPE、纸塑等内衬件,纸箱内装入内衬件后,其抗压强度会提高。但内衬件的设计对抗压提高的幅度也不一样。内衬件设计成直角比设计成圆角更有利于提高抗压强度。(见图5略) 纸箱堆放的温湿环境

纸箱对温湿环境比较敏感,温度对纸箱的抗压强度影响较小,但湿度则非常明显。随着

温度和湿度的增加,纸箱的抗压强度呈明显下降趋势,在温度30℃、湿度80%RH时开始急剧下降,当温度为45℃、湿度95%RH时,抗压强度下降幅度可达60%以上。 纸箱抗压的推算方法

找出瓦楞纸箱结构工艺与纸箱抗压强度的规律,一直是瓦楞行业广大同仁致力研究的重要课题之一。瓦楞包装在欧美历史比较悠久,国外同行在对抗压强度的研究方面也有所建树,并总结出了一些抗压强度推算经验公式。其中较为流行的有:

根据瓦楞纸板原纸的环压强度计算纸箱抗压强度的凯里卡特公式(K.Q.Kellicutt);

P——瓦楞纸箱抗压强度(N);

Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数;

Z——瓦楞纸箱周边长(cm); J——纸箱常数。

根据瓦楞纸板内外面纸的横向康哥拉平压强度来计算抗压强度的马丁荷尔特公式(Maltenfoit);

P——瓦楞纸箱抗压强度(N);

CLT- O ——内、外面纸横向平压强度平均值(N/cm)。

以瓦楞纸板的边压强度和厚度作为瓦楞纸板的参数,以箱体周长、长宽比和高度作为标志结构的因素计算瓦楞纸箱的抗压强度的沃福公式(Wolf);

Pm——瓦楞纸板边压强度(N/m)

把纸板的边压强度和挺度作为影响瓦楞纸箱强度的主要因素,而且认为纸箱抗压随纸箱周长的平方根而变化的马基公式(Makee)。

Dx——瓦楞纸板纵向挺度(MN·m) Dy——瓦楞纸板横向挺度(MN·m)

马基简易公式:

包卷式纸箱抗压强度计算公式:

PwA——包卷式纸箱抗压强度(N); Pm ——瓦楞纸板边压强度(N/m) a——常数 b——常数

而其中尤以凯里卡特公式最受国内同行推崇,国内专业杂志刊登的有关纸箱抗压的文章大都以它作为推算公式。但经过实践证明,凯里卡特公式推算纸箱抗压强度的准确度较低,且计算方法比较复杂,难以掌握。

通过大量的数据分析,笔者总结出了一套准确推算抗压强度的方法,经实践检验准确度可达到90%以上。该方法主要是根据抗压推算公式算出纸箱抗压强度初始值,并结合纸箱结构工艺对公式推算出的结果进行修正而得出最终的推算结果。 纸箱抗压强度推算流程

要准确推算纸箱的抗压强度,首先须测出纸箱周长、纸板厚度及纸板边压强度,并结合纸箱结构工艺对推算值进行修正。边压强度可根据组成瓦楞纸板各层原纸的横向环压强度及纸板坑型进行推算。对于没有测试仪器的工厂,只要知道原纸的环压强度或环压指数,也可以推算出纸箱的抗压强度。必须指出的是,原纸的环压值必须客观真实,并且原纸的环压强度须是在23℃±1℃,52±2%RH的温湿环境下的测试值。 纸箱抗压强度推算流程如图6(略)所示。 纸箱抗压强度的推算公式

通过大量的测试数据验证,我们发现下面的公式推算出的结果比较接近真实值,并且计算简单,易于掌握。在此推荐给大家: B=5.874×E× T×C

B表示纸箱抗压,单位N 5.874为系数

E表示纸板边压强度,单位N/m T表示纸板厚度,单位m C表示纸箱周长,单位m 举例:

一规格为360mm×325mm×195mm的普通开槽型纸箱,坑形为C坑,纸板厚度为3.6mm,边压强度为4270N/m,试推算其整箱抗压值。 题解:

可知纸箱周长为1.37m,纸板厚度为3.6mm,边压强度为4270 N/m 根据公式:纸箱抗压强度 B=5.874×E × T × C B=5.874 ×4270 × 0.0036 ×1.37 B=1755N

纸板边压强度的推算方法

瓦楞纸板的边压强度等于组成纸板各层原纸的横向环压强度之和,对于坑纸,其环压值为原纸环压强度乘以对应的瓦楞伸长系数。 单瓦楞纸板Es= (L1+L2+r×F)

双瓦楞纸板Ed= (L1+L2+L3+r×F+r1×F1)

三瓦楞纸板Et= (L1+L2+L3+L4+r×F+r1×F1+r2×F2) 式中

L1、L2、L3、L4分别为瓦楞纸板面纸、里纸及中隔纸的环压强度(N/m); r、r1、r2表示瓦楞伸长系数(见表二); F、F1、F2表示芯纸的环压强度(N/m); 表二 不同楞型的伸长系数及纸板厚度 楞型 A C B E

伸长系数(r) 1.53 1.42 1.40 1.32 纸板厚度 5 4 3 1.5

注:1. 不同瓦线设备,即使是同一种楞型,由于其瓦楞辊的尺寸不同,瓦楞伸长系数也存在偏差,所以纸箱企业在使用表二进行推算时需根据工厂的设备情况对伸长系数进行调整。 2. 双坑、三坑纸板的厚度就是由各单坑厚度简单相加。 举例:

有一款K4A纸板,用纸配置为230K/130F/160A?o已知230K的横向环压强度为2208N/m,130F的环压为516 N/m ,160A的环压为1328 N/m求其边压强度。 题解:

查表得C瓦楞伸长系数为r=1.42 根据公式ES= (L1+L2+r×F) = (2208+1328+1.42 ×516) = 4269 N/m

表三 纸箱抗压强度值修正表

印刷工艺修正(瓦楞板为印刷底材)

印刷工艺 单色印刷 双色及三色印刷 四色套印,满版面实地 抗压强度调整减6~8%,文字内容越多,印刷面积越大,减幅越大减10-15%,文字内容越多,印刷面积越大,减幅越大四色套印减20%,满版面实地减20%,满版实地加多色减30% 长宽高尺寸及比例

高度及长宽比 长宽比大于2 箱高超过65cm 抗压强度调整 减20% 减8% 开孔方式

开孔方式及位置 纸箱侧唛各加一通气孔两侧唛各一个手挽两侧唛各一个手挽,正唛一个手挽

抗压强度调整 减10% 减20% 减30% 模切工艺

模工工艺 平压平啤切 圆压平啤切 圆压圆啤切 抗压强度调整 减5% 减20% 减25% 综合举例

有一款彩盒,其坑型为BE坑;尺寸为510×420×330CM;五层纸的用纸配置为350华丰白板/112VISY坑纸/125理文B纸/112VISY F纸/175理文A纸;平压平啤切时两侧唛各打一个手挽,已知350华丰W环压为2900N/m、112VISY F纸环压为740N/m、125理文B纸环压为1100N/m、175理文A环压为1420N/m;试推测其抗压值。 题解:

根据彩盒尺寸可知周长为1.86m,根据坑型可知纸板厚度为0.0045m,根据坑型和原纸环压可知边压为7425N/m

带入公式 P=5.874×7425N/m× 1.86×0.0045 =5.874×7425N/m×0.091m =3969N

由于纸箱两侧唛各一个手挽,则实际抗压应减去20%,平压平啤切,抗压减5%,所以纸箱的实际抗压值应为: 3969×(1-25%)=2977N

纸箱抗压的用纸配置方法

若客户对纸箱抗压值及纸箱印刷加工工艺有明确要求,则可以通过抗压强度推算公式推算出纸箱的边压强度,再根据边压强度推算公式反推出满足客户抗压要求的原纸配置。如果客户仅提供纸箱重量、运输、堆码及印刷加工工艺等方面的信息,那么我们也可以推算出纸箱的抗压要求,再根据抗压强度推算公式和边压强度推算公式反推出纸箱的边压强度值,并进而确定其用纸配置。详见抗压强度用纸配置流程图。

(一级标题)纸箱抗压强度设计公式

纸箱的抗压强度由纸箱装箱后的总重量、堆码层数和安全系数决定。纸箱抗压强度设计公式如下: P=G×(n-1) ×K

P表示纸箱空箱抗压

G表示单个装箱后的总重量 n表求纸箱装机后的堆码层数 K表示安全系数 举例:

一款纸箱装箱后总重量为15kg、其堆码层数规定为9层,其安全系数设定为5.5,则其抗压值应为多少?

题解 代入公式P=G×(n-1) ×K =15×8×5.5 =660kg

安全系数设计方法

纸箱在流通过程中所受的影响,除了堆码的重量外,还受堆放时间?p温湿环境?p内装物水分?p振动冲击等因素的影响,考虑到这些因素都会造成纸箱抗压强度下降,因此必须设定一个安全系数,确保纸箱在各种因素的作用下,抗压强度下降后仍有足够的能力承受堆码在其上面纸箱的重量。

一般来说,内装物可以承受一定的抗压,且内装物为运输流通过程较简短的内销品时,安全系数设为3~5左右。内装物本身排放出水分,或者内装物为易损的物品,堆码时间较长、流通环节较多,或者保管条件?p流通条件恶劣时,安全系数设为5~8。

安全系数可以在各种各样的导致抗压强度降低的主要因素确定的前提下,根据一定的方法计算出。

1

K=----------------------------- (1-a)(1-b)(1-c)(1-d)(1-e)… a:温湿度变化导致的降低率 b:堆放时间导致的降低率 c:堆放方法导致的降低率 d:装卸过程导致的降低率 e:其它 举例:

a:温湿度变化导致纸箱压降低率为40% b:堆放时间导致的降低率为30% c:堆码方法导致的降低率为20% d:装卸过程导致的降低率为10% e:其它因素导致的降低率为10%

则安全系数

1

K=---------------------------------------=3.67 (1-0.4)(1-0.3)(1-0.2)(1-0.1) (1-0.1)

表四 安全系数设计参数表 装箱后温湿度环境变化

温湿环境装箱后从出厂到销售过程中,存储于干燥阴凉环境装箱后通过陆路流通,但纸箱所处的温湿环境变化较大装箱后入货柜,走海运出口 抗压强度减损率 10% 30% 60% 装箱后堆码时间长短

堆码时间 堆码时间不超过1个月 堆码1~2个月左右堆码时间3个月以上 抗压强度减损率 15% 30% 40% 装箱后堆放方法

堆放方法纸箱采用角对角平行式堆码纸箱堆放时不能箱角完全对齐,但堆放整齐纸箱杂乱堆放

抗压强度减损率 5% 20% 30% 装卸流通过程

装卸流通情况流通过程中仅装卸一次,且装卸时很少受到撞击虽经多次装卸,但装卸时对纸箱撞击较少从工厂到超市需经过多次装卸,且运输装卸过程中常受撞击 抗压强度减损率 10% 20% 50%

其它需考虑的因素

其它影响因素糊料加入了防水耐潮的添加剂(安全系数设计时可从温湿环境对抗压的影响中减去)内装物本身为贵重易损物件,对纸箱的保护性要求非常高

抗压强度减损率 -10% 60% 综合举例

有一款纸箱,纸箱装货后总重量为18kg,纸箱最高堆码层数为5层,纸箱为单色印刷、两侧唛各有一个手挽,通过货柜船运到美国,要求坑型为BC坑,尺寸为415 cm×124 cm×230cm,请设计其用纸配置。

题解:

第一步:设定安全系数

因是通过货柜出口,则设定温湿度变化导致纸箱压降低率为60%,设定堆放时间导致的降低率为30%,堆码方法导致的降低率为20%;装卸情况未做特殊说明,设定装卸过程导致的降低率为20%。 则其安全系数 1

K=---------------------------------=5.6 (1-0.6)(1-0.3)(1-0.2)(1-0.2) 第二步:推算抗压强度 根据抗压设计公式 P=G×(n-1) ×K 则该款纸箱的抗压值应为 P=18×(5-1)×5.6 =403kg(3955N)

第三步:根据印刷加工工艺对抗压强度进行修正

因纸箱为单色印刷、两边各打一手挽,所以需对推算的抗压强度预以修正,以补偿印刷加工工艺给抗压带来的减损。根据《纸箱抗压强度值修正表》,单色印刷使抗压减少6%,手挽使抗压减少20%,则纸箱抗压强度应设定为: 3955×(1+26%)=4983N

第四步:根据抗压强度推算公式反推出纸板边压强度

根据尺寸可知周长为1.078m,根据坑型可知纸板厚度为0.0065m,已知纸箱抗压要求为3559N。

则代入纸箱抗压推算公式: B=5.874×E× T×C 4983=5.874×E× 1.078×0.0065 E=10135N/m

则纸板的用纸配置必须达到10135N/m的边压才能满足该款纸箱的要求。 第五步:最后确定合理的用纸配置 根据边压强度公式,纸板的楞型,并结合工厂原纸的横向环压强度参数确定最合理的用纸配置,在此不作列举。 纸箱抗压测试

纸箱抗压测试方法是将纸箱置于压力试验机上,以一定的速度在其顶部(或底部)均匀地施加压力,以此评定纸箱承受外部压力的能力也即纸箱对内装物的保护能力。纸箱压力实验也叫做压缩试验,是对纸箱性能的最基本测试。此项试验还可以测定纸箱在不同状态下的抗压能力。

纸箱抗压测试方法

纸箱的压力试验采用的设备为纸箱专用压力试验机,这种试验机有两块面积较大加压板,常见上下压板的面积有1.5m×1.5m或1m×1m两种规格。两块加压板中,有一块是支承

板,其位置可根据试样的尺寸来调整,使它具有适合的高度,然后把它紧固住;另一块是加压板,可沿导杆(立柱)滑动,向试样施加压力。

试验机的最大工作能力为50KN(5000kgf),加压板移动速度为10mm/min,也有采用1 英寸/分钟的。设备应附有测量精度不低于±0.5mm的位移指示装置,有些试验机带有自动记录仪,可自行记录载荷——变形曲线。

纸箱对温湿环境比较敏感,温湿度不同,纸箱的水分含量也不同。而水分则对抗压强度产生很大影响,即使同一纸箱,水分含量差异较大,测得的抗压值也存在较大差异。因此,为保证获得客观真实的测试结果,测试前须对测试试样进行温湿平衡处理。具体操作办法是将试样置于23±1?C ?p52 ±2%RH的标准温湿环境,直至试样水分含量不再发生变化,一般试样的处理时间需12小时以上。

整个抗压测试大致分为三个阶段,首先是预压阶段,给纸箱先行施加一个220N的压力,以保证纸箱的加压板充分接触;其次是纸箱受压变形的阶段,此时纸箱在压力下慢慢变形,试验机显示的压力值稳步上升,但纸箱未出现损坏迹象;第三个阶段是纸箱的压溃阶段,此阶段的主要表征是压力值瞬间下降,纸箱变形量突然加大,这时显示的压力值即为纸箱的抗压强度。

抗压测试的试样一般不少于三个,试样不能有破损,折痕,脱胶等缺陷。测试结果为各测试值的平均数,但如果测试值中有一个存在明显偏差,则应预以剔除后再取平均值。 快速准确地测出纸箱抗压值的技巧

抗压测试的试样预处理时间很长,而越来越短的交货期则要求纸箱在生产出来后立即知道准确的测试结果,很多纸箱厂对此深感头痛。在此,笔者提供一种不经温湿平衡处理,快速而准确地测算出纸箱抗压的方法。经过实践检验,得出的结果跟温湿平衡处理后测试的结果非常接近。

进行快速测算,需要的设备除了纸箱抗压测试仪外,还需要数配备一台数字式水分测试仪,该仪器须可即时得到测试结果,且准确度在±0.5℃以内。

测试方法是测出纸箱的抗压强度及纸板水分含量,然后根据《水分含量及抗压关系对照表》推算出纸箱的抗压值(见附表五)。

经测试证明,纸箱在标准温湿环境平衡后水分含量为8%,故可以认定纸箱水分为8%时,测得的抗压值为真实值(基准值)。若纸箱水分含量超过8%,其抗压强度会有不同程度的下降,且其下降的幅度与水分含量存在一定的对应关系。因此,我们测出抗压值及水分含量后,根据对照表中的对应关系即可换算出平衡后的抗压值。

表五 水分含量与抗压关系对照表 纸板含水量% 8 9 10 11 12 13 14 15 16

抗压强度指数% 100 90 81 73 66 59 53 48 43 举例

有一款试样未经温湿平衡处理的纸箱,测得其空箱抗压强度为6250N,纸板水份含量为10%,试推算其正确的抗压值。

通过查表可得,纸箱的水分含量为10%时,此时抗压强度的测试值是真实值的81%。 设抗压强度真实值为R,则R=6250/81% =7716N

则可推知试样经过温湿平衡处理后的抗压强度为7716N

纸箱抗压与高温高湿

在我国的珠三角地区,由于大多数商口采用货柜装载并通过海运出口的方式,在长达数十天的海运途中,货柜里面的温湿度可高达45?C、93%RH,此时纸箱的承压力比正常状况下降60%以上,很容易造成纸箱坍塌,造成此种情况的主要原因是浆糊在高温高湿下易产生乳化现象的缘故。由于瓦楞纸板由浆糊粘合而成,通常情况下瓦楞纸板糊线部位的浆糊为固态,但如果纸箱长时间存放在高温高湿的环境,浆糊会产生乳化现象,从而造成瓦楞板粘合位脱离,导致纸箱抗压急剧下降。

为保证出口纸箱在高温高湿条件下仍然有足够的抗压能力,在客户的推动下,有些纸品厂开始增加纸箱高温高湿性能这一测试项目。纸箱高温高湿的测试方法是将纸箱封箱后放入高低温交变湿热箱内,设定温湿度为45?C?p93%RH,在箱顶上堆放砝码,砝码重量为空箱抗压值1/4~1/6,观察其承受重压的时间。

一些纸箱厂为保证纸箱在高温高湿状态下能承受住一定的堆码重量,被迫采用拔高纸箱抗压强度的方法,造成了用纸成本的大幅增加。近两年来,在糊料中加入交联剂和稳定剂来提高纸箱耐高温高湿性的做法得到广泛认可。交联剂是一种高分子聚合物,加入糊料后其分子会取代淀粉分子中的羟基,形成稳定的交联。由于交联剂分子的反应过程是比较缓慢且过程不可逆的,所以其粘合及防潮效果在纸板离开生产线后会逐步增强,反应完全后就完全疏水,形成坚固而防潮的浆膜,从而赋予纸板良好的抗高温高湿性能。

此外,淀粉分子被交联剂分子包围,增强了抗热和抗剪切的能力,从而在循环过程中保持粘度的稳定性。由于淀粉分子中羟基被取代,由亲水性变为疏水性,所以干燥时易脱水,提高了干燥速度,进而提高车速。交联剂分子易亲和纤维分子,还可以帮助提高粘合强度。

近三年来,改善纸板性能的糊料添加剂纷纷面世,粗步估计,目前市面上有不低于20多个品种,但质量良莠不齐。仅以起防水耐潮作用的树脂类添加剂为例,已有近10个品牌,价格方面也千差万别,一些价格便宜的添加剂,其固含量只有30%,糊化时间竟长达几分钟;而一些进口的品牌,价格虽然高一些,但固含量超过50%,糊化时间则不到1分钟,最快甚至只需40秒。还有,纸箱厂一定要根据客户需求、设备状况、原纸规格及员工素质等方面的情况考虑选用何种添加剂,而且还要考察供应商的专业水平及售后服务情况,因为若想把一种添加剂产品的作用充分发挥出来,并不是简单地“倒进去用就行了”,里面蕴含着相当多的专业知识。

文章链接:中国化工仪器网 http://www.chem17.com/Tech_news/Detail/340974.html

因篇幅问题不能全部显示,请点此查看更多更全内容

Top