搜索

...C是AB延长线上一点,点D在⊙O上,且∠A=30°,∠ABD=2∠BDC . (1...

发布网友 发布时间:2024-10-23 20:14

我来回答

1个回答

热心网友 时间:2024-11-01 21:36

(1)连结OD,根据圆周角定理可得∠ADB=90°,即可求得∠ABD=60°,从而可以求得∠BDC= ,即可证得△ODB是等边三角形,则可得∠ODC=90°,问题得证;(2) ,

试题分析:(1)连结OD,根据圆周角定理可得∠ADB=90°,即可求得∠ABD=60°,从而可以求得∠BDC= ,即可证得△ODB是等边三角形,则可得∠ODC=90°,问题得证;
(2)根据平行线的性质可得∠OED=90°,根据垂径定理可得 ,根据勾股定理可求得OE的长,然后根据∠DOC、∠DOF的正切函数即可求得CD、DF的长,从而可以求得结果.
(1)连结OD

∵AB是⊙O的直径,
∴∠ADB=90°.
∵∠A=30°,
∴∠ABD=60°.
∵∠ABD=2∠BDC,
∴∠BDC= .
∵OD=OB,
∴△ODB是等边三角形.
∴∠ODB=60°.
∴∠ODC=∠ODB+∠BDC=90°.
∴CD是⊙O的切线;
(2)∵OF∥AD,∠ADB=90°,
∴∠OED=90°
∵BD=OB=2,
∴ .
∴ .
∵OD=OB=2,∠DOC=60°,∠DOF=30°,
∴ , .
∴ .
点评:此类问题知识点较多,综合性较强,在中考中比较常见,一般难度不大,需熟练掌握.
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
Top