搜索

|x-1|+|x-2|+…+|x-2005|的最小值是__

发布网友 发布时间:2024-10-23 23:46

我来回答

1个回答

热心网友 时间:2024-10-29 10:54

由于原式的绝对值共有2005项,最中间的那一项是|x-1003|,所以只需取x=1003,它们的和就可以获得最小值,原式可以展开为:
|x-1|+|x-2|+|x-3|+…+|x-2005|
=|1003-1|+|1003-2|+…+|1003-1003|+|1003-1002|+…+|1003-2005|
=1002+…+1+0+1+…+1002
=2×(1+2+3+…+1002)
=1005006.
故答案为:1005006.
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
Top