搜索

...二次型f(x1,x2,x3)=5x1^2+5x2^2+2x3^2-8x1x2-4x1x2+4x2x3化为标准...

发布网友 发布时间:2024-10-23 21:22

我来回答

1个回答

热心网友 时间:2024-11-13 19:35

解: 二次型的矩阵 A =
5 -4 -2
-4 5 2
-2 2 2

|A-λE| =
5-λ -4 -2
-4 5-λ 2
-2 2 2-λ

r1+2r3,r2-2r3
1-λ 0 2(1-λ)
0 1-λ -2(1-λ)
-2 2 2-λ

c3+2c2
1-λ 0 2(1-λ)
0 1-λ 0
-2 2 6-λ

= (1-λ)[(1-λ)(6-λ)+4(1-λ)]
= (1-λ)^2(10-λ)

所以 A 的特征值为 λ1=λ2=1,λ3=10.

(A-E)X=0 的基础解系为: a1=(1,1,0)',a2=(1,0,2)'
正交化得: b1=(1,1,0)',b2=(1/2)(1,-1,4)'
单位化得: c1=(1/√2,1/√2,0)',c2=(1/√18,-1/√18,4/√18)'

(A-10E)X=0 的基础解系为: a3=(-2,2,1)'
单位化得: c3=(-2/3,2/3,1/3)'

令P=(c1,c2,c3)=
1/√2 1/√18 -2/3
1/√2 -1/√18 2/3
0 4/√18 1/3

则 P为正交矩阵
X=PY是正交变换, 使
f = y1^2+y2^2+10y3^2
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
Top